Structure and Functions: ERM Protein Family
Divine Mensah Sedzro,
Sm Faysal Bellah,
Hameed Akbar,
Sardar Mohammad Saker Billah
Issue:
Volume 6, Issue 2, December 2018
Pages:
20-32
Received:
15 September 2018
Accepted:
6 October 2018
Published:
29 October 2018
DOI:
10.11648/j.cb.20180602.11
Downloads:
Views:
Abstract: Preservation of the structural integrity of the cell depends on the plasma membrane in eukaryotic cells. Interaction between plasma membrane, cytoskeleton and proper anchorage influence regular cellular processes. The needed regulated connection between the membrane and the underlying actin cytoskeleton is therefore made available by the ERM (Ezrin, Radixin, and Moesin) family of proteins. ERM proteins also afford the required environment for the diffusion of signals in reactions to extracellular signals. Other studies have confirmed the importance of ERM proteins in different mode organisms and in cultured cells to emphasize the generation and maintenance of specific domains of the plasma membrane. An essential attribute of almost all cells are the specialized membrane domains. They are specifically important to tissues like the intestinal brush border epithelium, with a highly organized cell cortex including a compound array of apical microvilli, an apical junctional complex, and a basolateral membrane domain. This paper critically looks at the structure and functions of the ERM proteins and briefly presents the activation and deactivation mechanism through careful analysis on works done on this protein and its prospects. It is obvious from the discussion presented in this paper that the ERM (Ezrin, Radixin, and Moesin) proteins play very vital roles in mediating signal transduction and maintaining cellular integrity from a variety of extracellular inputs through their interaction with different receptor tyrosine kinases (RTKs) such as EGFR and HGFR, adhesion and adaptor proteins such as E-cadherin, ICAM-1,2,3, NHERF and CD44, and other signaling pathways such as PI3K/Akt, cAMP/PKA and the Rho GTPases, all of which have been implicated in tumorigenesis; thus, making ERM proteins a crucial target in development of novel therapeutics in fighting cancer progression and other related disease conditions where the protein is implicated. Further analysis on the structure and reaction mechanism of this protein is needed to exploit its full potential for clinical and other uses.
Abstract: Preservation of the structural integrity of the cell depends on the plasma membrane in eukaryotic cells. Interaction between plasma membrane, cytoskeleton and proper anchorage influence regular cellular processes. The needed regulated connection between the membrane and the underlying actin cytoskeleton is therefore made available by the ERM (Ezrin...
Show More
Possible Hypothesis on Alzheimer’s Disease Pathogenesis and Its Link to Trisomy 21
Endriyas Kelta Wabalo,
Chala Kenenisa Edae
Issue:
Volume 6, Issue 2, December 2018
Pages:
33-46
Received:
9 November 2018
Accepted:
19 December 2018
Published:
4 January 2019
DOI:
10.11648/j.cb.20180602.12
Downloads:
Views:
Abstract: The presence of “plaques” and “tangles” in the brain is considered as the hallmark of Alzheimer’s disease. The major constituent of the plaques is a protein (“A-beta”) which is split off from a much larger parent protein called Amyloid Precursor Protein (APP), and that of tangles is the protein tau, which normally functions to stabilize microtubules within neuronal axons. There are several possibilities that elaborate the change in amyloid formation and its consequences on the neuronal death to bring AD; the first is the amyloid cascade hypothesis that describes how early-onset AD is induced by mutations in APP, the presenilins and apoE4. The second possibility is the calcium hypothesis of Alzheimer’s disease, which argues the calcium-induced memory loss in Alzheimer’s disease. Mapping of the gene that encodes the precursor protein (APP) of the β-amyloid (Aβ) present in the Aβ plaques in both AD and DS to chromosome 21 was strong evidence that the chromosome 21 gene product was a principal neuropathogenic culprit in the AD as well as DS. The main objective of this review was elucidate the possible hypothesis of Alzheimer’s disease and to pinpoint the chromosome 21 gene product as principal neuropathogenic culprit in the pathogenesis of AD and DS. Different articles on pathogenesis of AD and its link to DS were revised. As conclusion, different hypothesis on AD pathogenesis discussed on this review illustrated well about the pathogenesis of AD, its link to DS and potential target for certain therapeutic agents to act on the treatment of AD and DS.
Abstract: The presence of “plaques” and “tangles” in the brain is considered as the hallmark of Alzheimer’s disease. The major constituent of the plaques is a protein (“A-beta”) which is split off from a much larger parent protein called Amyloid Precursor Protein (APP), and that of tangles is the protein tau, which normally functions to stabilize microtubule...
Show More